Charles-Antoine Poulin
References :
Capter le bois / détecter la forêt
PLANCHE 1 – Nelson Marlborough Institute of Art Building (Nouvelle-Zélande)
Fig. 1 Tremblements de terre (Nouvelle-Zélande)
United States Geological Survey. (2021). Earthquake hazards program. USGS. https://earthquake.usgs.gov/ fdsnws/event/1/query.geojson?starttime=2010-01 01%2000:00:00&endtime=2021-04-05%2023:59:59&maxlati- tude=-32.194&minlatitude= 49.11&maxlongitude=186.328&minlongitude=162.422&minmagnitude=2.5&orderby=ma- gnitude-asc.
TDVL (Image centrale, droite)
Tyco Electronics [TE Connectivity]. (2017). Linear Variable Differential Transformer (LVDT) – Tutorial. https://www.te.com/usa-en/industries/sensor-solutions/insights/lvdt-tutorial.html
Fig. 2 (Capteurs installés)
Holden, T., Devereux, C., Haydon, S., Buchanan, A. et Pampanin, S. (2016). NMIT Arts & Media Building – Innovative structural design of a three storey post-tensioned timber building. Case studies in Structural Engineering, 6, 76-83. http://dx.doi.org/10.1016/j.csse.2016.06.003
Morris, H. W., Uma, S. R., Gledhill, K., Omenzetter, P. et Worth, M. (2010). The Long Term Instrumentation of a Timber Building in Nelson NZ - the need for standardization. Academia. Récupéré le 1er avril 2021 depuis https://www.academia.edu/17840945/The_long_term_
instrumentation_of_a_timber_building_in_Nelson_NZ_the_need_for_standardization
Morris, H. W., Zhu, M. et Wang, M. (2012). The long term instrumentation of the NMIT Arts Building – EXPAN Shear Walls. New Zealand Timber Design Journal, 20(1), 13-24. Récupéré le 1er avril 2021 depuis https://www.timberdesign.org.nz/wp-content/uploads/2018/05/TDJ-Vol-20-Issue-1-p13-to-24.pdf
PLANCHE 2 - Brock Commons Tallwood House (Canada)
Fig. 1 Surveillance de la qualité
Schmidt, E. L., Riggio, M., Barbosa, A. R. et Mugabo, I. (2019). Environmental response of a CLT floor panel: Lessons for moisture management and monitoring of mass timber buildings. Building and Environment, 148, 609-622. https://doi.org/10.1016/j.buildenv.2018.11.038
Fig. 2 Position des capteurs
Mustafa, G. (12 juin 2017). Methods of Practices for Monitoring Vertical Movement and Moisture Performance of Wood Structures [Session de conférence]. IUFRO Division 5. https://docs.wixstatic.com/ugd/80b50b_adc4c5a3a9d945a7848542e8c051f814.pdf
Réseautage des données
Bass, E. J., Riggio, M. et Barbosa, A. R. (2021). A methodological approach for structural health monitoring of mass-timber buildings under construction. Construction and Building Materials, 268. https://doi.org/10.1016/j.conbuildmat.2020.121153
Fig. 3 Capteurs installés
The University of British Columbia. (2020). Operational performance of cross-laminated timber : Brock Commons Tallwood House. https://sustain.ubc.ca/sites/default/files/UBC%20Brock%
20Commons%20Structural%20Performance%20Report%20Sept%202020.pdf
PLANCHE 3 - George Peavy Hall Building (États-Unis)
Fig. 1 Économie de matière pour résistance égale
Frere Lumbers. (n.d.). MPP’s Specifications. Accédé le 30 mars 2021 depuis https://frereslumber.com/specifications/.
Fig. 2 Capteurs installés
Bass, E. J., Riggio, M. et Barbosa, A. R. (2021). A methodological approach for structural health monitoring of mass-timber buildings under construction. Construction and Building Materials, 268. https://doi.org/10.1016/j.conbuildmat.2020.121153
Baas, E. J., Riggio, M. et Barbosa, A. R. (2021). Structural health monitoring data collected during construction of a mass-timber building with a data platform for analysis. Data in Brief, 35. https://doi.org/10.1016/j.dib.2021.106845.
PLANCHE 4 - Taiyuan Botanical Gardens (Chine)
Fig. 1 Usage historique
Charest, P., Potvin, A., Demers, C. M. H. et Ménard, S. (2019). Assessing the complexity of Timber Gridshells in Architecture through Shape, Structure and Material Classification. BioRessources, 14 (1), 1364-1378. https://doi.org/10.15376/biores.14.1.1364-1378.
Superposition des trois couches de la structure
Epp, L. et Sullivan, B. (2020). Long-span timber gridshell – The Taiyuan Domes. New Zealand Timber Design Journal, 28 (1), 18-26. Accédé le 3 avril 2021 depuis https://www.timberdesign.org.nz/wp-content/uploads/2020/05/2020Vol28Iss1-Epp-Paper.pdf
Mécanisme de tension de la structure
StructureCraft. (2021). Taiyuan Botanical Garden Domes. Accédé le 30 mars 2021 depuis https://structurecraft.com/projects/taiyuan-domes.
PLANCHE 5 - Arch_Tech_Lab (Suisse)
Découpe, placement et clouage
Apolinarska, A. A. (2018). Complex Timber Structures from Simple Elements Computational Design of Novel Bar Structures for Robotic Fabrication and Assembly. (Publication 24771) [Dissertation de doctorat, ETH Zurich]. ETH Zürich Research Collection.
Fragmentation des poutres de toit
Apolinarska, A. A. (2018). Complex Timber Structures from Simple Elements Computational Design of Novel Bar Structures for Robotic Fabrication and Assembly. (Publication 24771) [Dissertation de doctorat, ETH Zurich]. ETH Zürich Research Collection.
Axonométrie du projet
Erne. (2021). Arch_Tec_Lab, ETH Zürich. Accédé le 31 mars 2021 depuis https://www.erne.net/fr/references/reference-detail/reference/arch-tec-lab/.
PLANCHE 6 - Urbach Tower (Allemagne)
Hygroscopie du bois et cambrure au séchage
Aldinger, L., Bechert, S., Wood, D., Knippers, J. et Menges, A. (2020). Design and Structural Modelling of Surface-Active Timber Structures Made from Curved CLT – Urbach Tower, Remstal Gartenschau 2019. Dans Gengnagel, C., Baverel, O., Burry, J., Ramsgaard, T. M. et Weinzierl, S. (éditeurs). Impact: Design With All Senses (pp. 419-432). Design Modelling Symposium Berlin. https://link.springer.com/content/pdf/10.1007%2F978-3-030-29829-6_33.pdf
Grönquist, P., Wood, D., Hassani, M. M., Wittel, F. K., Menges, A. et Rüggeberg, M. (2019). Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 5 (9). https://doi.org/10.1126/sciadv.aax1311